42 research outputs found

    Approximating the generalized terminal backup problem via half-integral multiflow relaxation

    Get PDF
    We consider a network design problem called the generalized terminal backup problem. Whereas earlier work investigated the edge-connectivity constraints only, we consider both edge- and node-connectivity constraints for this problem. A major contribution of this paper is the development of a strongly polynomial-time 4/3-approximation algorithm for the problem. Specifically, we show that a linear programming relaxation of the problem is half-integral, and that the half-integral optimal solution can be rounded to a 4/3-approximate solution. We also prove that the linear programming relaxation of the problem with the edge-connectivity constraints is equivalent to minimizing the cost of half-integral multiflows that satisfy flow demands given from terminals. This observation presents a strongly polynomial-time algorithm for computing a minimum cost half-integral multiflow under flow demand constraints

    Spider covers for prize-collecting network activation problem

    Full text link
    In the network activation problem, each edge in a graph is associated with an activation function, that decides whether the edge is activated from node-weights assigned to its end-nodes. The feasible solutions of the problem are the node-weights such that the activated edges form graphs of required connectivity, and the objective is to find a feasible solution minimizing its total weight. In this paper, we consider a prize-collecting version of the network activation problem, and present first non- trivial approximation algorithms. Our algorithms are based on a new LP relaxation of the problem. They round optimal solutions for the relaxation by repeatedly computing node-weights activating subgraphs called spiders, which are known to be useful for approximating the network activation problem

    Integrality Gap of Time-Indexed Linear Programming Relaxation for Coflow Scheduling

    Get PDF
    Coflow is a set of related parallel data flows in a network. The goal of the coflow scheduling is to process all the demands of the given coflows while minimizing the weighted completion time. It is known that the coflow scheduling problem admits several polynomial-time 5-approximation algorithms that compute solutions by rounding linear programming (LP) relaxations of the problem. In this paper, we investigate the time-indexed LP relaxation for coflow scheduling. We show that the integrality gap of the time-indexed LP relaxation is at most 4. We also show that yet another polynomial-time 5-approximation algorithm can be obtained by rounding the solutions to the time-indexed LP relaxation

    Network design with edge-connectivity and degree constraints

    Get PDF
    We consider the following network design problem; Given a vertex set V with a metric cost c on V, an integer k≥1, and a degree specification b, find a minimum cost k-edge-connected multigraph on V under the constraint that the degree of each vertex v∈V is equal to b(v). This problem generalizes metric TSP. In this paper, we show that the problem admits a ρ-approximation algorithm if b(v)≥2, v∈V, where ρ=2.5 if k is even, and ρ=2.5+1.5/k if k is odd. We also prove that the digraph version of this problem admits a 2.5-approximation algorithm and discuss some generalization of metric TSP

    Deliver or hold: Approximation Algorithms for the Periodic Inventory Routing Problem

    Get PDF
    The inventory routing problem involves trading off inventory holding costs at client locations with vehicle routing costs to deliver frequently from a single central depot to meet deterministic client demands over a finite planing horizon. In this paper, we consider periodic solutions that visit clients in one of several specified frequencies, and focus on the case when the frequencies of visiting nodes are nested. We give the first constant-factor approximation algorithms for designing optimum nested periodic schedules for the problem with no limit on vehicle capacities by simple reductions to prize-collecting network design problems. For instance, we present a 2.55-approximation algorithm for the minimum-cost nested periodic schedule where the vehicle routes are modeled as minimum Steiner trees. We also show a general reduction from the capacitated problem where all vehicles have the same capacity to the uncapacitated version with a slight loss in performance. This reduction gives a 4.55-approximation for the capacitated problem. In addition, we prove several structural results relating the values of optimal policies of various types
    corecore